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Abstract 
In this project, I implement a physics-based system to 

create animation of liquids. The fluid flow is computed 

by solving Navier Stokes Equations using both the 

Lagragian method and an implicit solver. A scalar field 

representing liquid densities is solved over time steps, 

and then an adaptive marching cube algorithm is used 

to extract the isosurface of the liquid of interest. For the 

two-dimensional scheme, the system is designed to be 

interactive, due to low computation cost. As for a 3D 

case, the solver cannot act in real-time, so I try to 

improve the quality of the results. I implement mesh 

consolidation to compute vertex normal, smoothing the 

visual appearance of the coarse mesh of liquid surface. 

Finally, the scene is rendered with a ray tracer and 

rendered image sequences are collected to make video 

clips. 

 

1.  Introduction 
Animators have always been interested in generating 

animation of liquids. However, it is difficult for users to 

create visually pleasing fluid motion manually. Hence 

physics-based approaches have been widely used in 

computer graphics for the past few years. 

 

The goal of this project is to develop a physics-based 

system that generates realistic animation of liquid, 

which is a specialized case of fluid animation. For 

liquids, human eyes are more sensitive to the surface 

(interface between the air and the liquid) rather than to 

the density, temperature, or other scalar fields of the 

flow. Therefore, different from smoke, rendering of 

liquid requires formation of the liquid surface, which 

should be modeled explicitly (with polygonal meshes) 

or implicitly (with level sets). 

 

Another difference between animation of liquid and of 

smoke is that the former usually involves boundaries, 

while the latter is sometimes simulated in an 

unbounded environment. Programmers have to take 

care of the boundary conditions in space dimension, 

and consider interaction between objects and liquid 

carefully. Moreover, liquid is directly influenced by 

gravity, whereas smoke particles are so light that 

gravity might often be ignored.  

 

Unlike traditional free surface approaches, I develop 

this system using marching cube algorithm to form the 

liquid surface. Marching cube is preferred since it 

directly constructs the surface using triangular meshes, 

which can be easily rendered with conventional 

computer graphics (either scan line or ray tracing) 

techniques.  Furthermore, users can smooth the mesh 

with subdivision or deform the surface intuitively by 

hand. Implicit surfaces might be harder to control and 

cannot be rendered using scan line methods without 

being converted to polygonal meshes first. 

 

In Section 2 I will describe some previous research 

work devoted to animation of liquids. In Section 3 I 

will introduce Navier Stokes equations, the foundation 

of my whole project. Section 4 will explain how to 

solve them numerically with stablity. I will further state 

in detail how I form the surface of the liquid in Section 

5 and discuss the result and statistics in Section 6 and 7. 

 

 1



2.  Related Work 
About ten years ago, creating fluid animation required 

laboriously manual inputs by animators. Most 

physics-based methods either were unstable or only 

handled 2D cases. Foster and Metaxas [1] successfully 

used a finite differencing of the Navier Stokes equation 

and an explicit solver to model the motion of gases in 

three dimensions. Such an explicit solver suffers from 

instability when time steps are not small enough.  

 

An implicit solver for the Navier Stokes equations was 

used by Stam in his paper [2]. He applied a 

semi-Lagrangian technique for velocity advection as 

well as a projection method to enforce mass 

conservation. His approach was stable even with a very 

large time step, which improves the performance of a 

fluid simulator considerably. Nevertheless, this scheme 

results in too much numerical dissipation. Fedkiw et al. 

later alleviated this problem in Visual Simulation of 

Smoke [3] by applying "vorticity confinement", which 

has been noted in the research of fluid mechanics.  

 

About twenty years ago, some methods have been 

proposed to model ocean waves; Fournier et al. [4] used 

parametric functions, while Peachy [5] chose sinusoidal 

phase functions. Kass et al. [6] simulated surface waves 

in water of varying depth, but did not address rotational 

and pressure based effects, which are important to 

animate fluid's characteristic behavior. Chen et al. [7] 

computed fluid motion in two dimensions, which 

allowed interaction between moving objects and the 

flow field, but the objects must be two-dimensional.  

 

Foster et al. [8] later modeled the liquid surface using 

combination of particles and implicit surfaces. This 

dynamical level set method managed to avoid both 

volume loss (when using implicit surfaces alone) and 

visual artifacts due to insufficient particles. Enright et al. 

[9] further achieved photorealism using a "thickened" 

front tracking technique. Ginzburg et al. [10] 

implemented free-surface in liquid animation using 

Lattice Boltzmann Model (LBM) in both two and three 

dimensions, but his method is not robust in complex 

geometries resulting from intrinsic compressibility. 

Matthias Muller et. al. [11] recently presents a method 

to deal with interaction of fluids with deformable solids; 

however, they focus on the interaction between 

particles and triangles but do not really construct the 

liquid isosurface. 

 

3. Navier Stokes Equation 
3.1 Representation of the Scene 
Before solving the equations for fluid motion, we need 

to represent the fluid corresponding to the equations. 

First of all, we have to partition the space into a finite 

number of grid cells, which constitute the 2D or 3D 

scene, as shown in Figure 1. The fixed boundary and 

objects in a scene can be approximated as a subset of 

these cells if aligned appropriately to the coordinate 

system we use.  

 

   
 

Figure 1.. Partitioning of 2D and 3D space into a finite 

number of grid cells. 

 

Within each single cell, a density variable and a 

velocity variable are defined. The density variable 

stores a scalar value, representing the density of the 

fluid at this grid, while the velocity variable stores a 

vector, representing the velocity at the center point of 

this grid. In fact, we need two sets of them in each cell, 

one for the current status and the other for the status at 
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the previous step.  

 

Note that this density value here is for the purpose of 

visualization of the fluids, and is calculated after the 

velocity field is solved. This is not directly related to 

the global density defined in Navier-Stokes Equations. 

Hence we may replace this "density field" with other 

scalar properties, for example, temperature. 

 

3.2 The Navier Stokes Equation 
The famous Navier Stokes Equations have been 

extensively studied in the in the field of CFD. Scientists 

use the equations to model and describe the flow of 

fluids such as smoke, fire, and liquid. 

 

Given the velocity and pressure for some initial time t = 

0 , evolution in the properties of fluids can be described 

by the Navier-Stokes equations: 

                          (1) 

(2) 

where is the vector of velocity, is the vector of 

pressure, is the viscosity, is the global density, 

is the vector of external force, and is the vector of 

partial derivatives in space; that is, in 

2D or in 3D. 
 

Equation (1) results from conservation of mass, and 

equation (2) results from conservation of momentum. 

These equations describe the behavior of 

incompressible fluid dynamics.  Actually, the pressure 

and velocity fields are related to each other. Therefore, 

equation (2) can be re-written with merely the velocity 

field: 

     (3) 

where P is a projector that projects any vector onto its 

divergence free space. In other words, for any vector , 
by Helmholtz-Hodge Decomposition,  

with , 

where q is a scalar, then  
 

4. Numerical Solver 
4.1  Semi-Lagragian Method 
Stam [2] solved equation (3) implicitly with the 

semi-Lagrangian method. At each simulation step, we 

want to obtain the velocity and scalar fields at time 

( ). This method cuts an entire single step into 4 
sub steps. 

 

Let X be the spatial coordinate, representing  

(x,y) in 2D or (x,y,z) in 3D, and  

,  

A simulation over a period of time is simply a repetition 

of this process. The first sub-step adds forces onto the 

field over the time step  

 

In the liquid case, gravity should be added as external 

force at this sub-step. 

 

The second sub-step carries out the effect of advection 

of the fluid on itself. For each cell, it traces (the center 

point of the cell) backwards in time to find the previous 

position at the last time step. Then, compute the 

previous value at that position by linear interpolation of 

values in its neighboring grids. This previous value 

determines the new value of this grid cell that we are 

computing. 

 
where p is the path corresponding to a partial streamline 

of the velocity field. 

 

The third sub-step is to solve a partial differential 

equation and models the effect of diffusion. An implicit 
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method is used here to solve the system, which is 

sparse and can be solved efficiently. 

 

 

The last sub-step constraints the mass conservation rule. 

It projects the previous vector onto the divergence free 

space ( ). 

 

 

In order to perform the last two sub-steps, I need the 

multi-grid algorithm to solve for the Poisson equation. 

The solver I chose is from the routine POIS3D in the 

library FISHPAK [12], as has been used in Stam's 

solver. The algorithm of the simulation, hence, looks 

like the following: 

 

UpdateVelocity (U_new, U_old, visc, force, dt) { 

AddForce(U_new, U_old, force, dt); 

swap(U_old, U_new); 

Advect(U_new, U_old, U_old, dt); 

swap(U_old, U_new); 

Diffuse(U_new, U_old, visc, dt); 

ConserveMass(U1, dt); /* projection */ 

} 

UpdateScalar (S_new, S_old, U, diff, source, dt) 

{ 

 /* add source */ 

AddForce(S_new, S_old, source, dt);  

swap(S_old, S_new); 

Advect(S_new, S_old, U, dt); 

swap(S_old, S_new); 

Diffuse(S_new, S_old, diff, dt); 

} 

while (simulating) { 

/* receive user input: F, source, etc. */ 

swap(U_old, U_new); 

swap(S_old, S_new); 

UpdateVelocity(U_new, U_old, visc, fource, 

dt); 

UpdateScalar(S_new, S_old, U_new, diff, 

source, dt);  

} 

 

4.2  Boundary Condition 
Foster and Metaxas proposed a clear idea about how to 

simulate boundaries and fixed objects in a scene, as 

described in [1]. First we approximate them by a subset 

of the grids in the scene. After the calculation of 

velocity fields and scalar fields (which is characterized 

by "temperature" in [2]) at any step, we simply reset the 

velocity and scalar value near an object boundary, 

according to some intuitive rules. That is, set zero to the 

component of velocity orthogonal to the boundary, and 

multiply a constant to the component of velocity 

parallel to the boundary. The constant multiplied clearly 

depends on the roughness of the boundary surface. 

Density values near boundary points are not modified, 

but those inside the boundary points should be kept 

zero (but it is different for temperature).  
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in Figure 2. The reason is that neighboring cells along 

two sides of the wall have to hold velocities in opposite 

directions. 

 

5. Surface of Liquids 
Since people are always more interested in the surface 

of liquids instead of density fields, the system has to 

form the surface to be rendered. While most previous 

work exploits dynamic level set ([8], [9], and [10]) or 

particles ([11]), I use marching cube method to directly 

build up the surface mesh. 

 

5.1  Marching Cubes 
The marching cubes algorithm [13] is used to construct 

an isosurface from a 3D field of values. In this project, 

the 3D field is just the density field evolved over time.  

 

The 2D analog is illustrated in the Figure 3.  For each 

pixel, set it to black if the value is below some 

threshold, and set it to white if it is above the threshold. 

Then smooth the jagged black outlines by skinning 

them with lines. This 2D case is also called marching 

squares.  

 

Figure 3. Marching Squres Illustration. 

 

The marching cubes algorithm tests the corner of each 

cell in the scalar field as being either above or below a 

given threshold. This yields a collection of boxes with 

classified corners. Since there are eight corners with 

two possible states, there are 256 different 

combinations for each cube. Then, for each cube, we 

replace the cube with a surface that meets the 

classification of the cube. The result of the marching 

cubes algorithm is a piecewise planar surface that 

approximates the isosurface which has constant density 

value along a given threshold. We can resolve the 

original 256 combinations of cell state down to a total 

of 15 combinations, as described in [13]; with this 

number it is then easy to create predefined polygon sets 

for making the appropriate surface approximation. 
 

5.2  Adaptive Marching Cube 

We could at any stage apply conventional smoothing 

(e.g., subdivision) to the mesh, this would of course 

improve the look but what is more important at this 

stage is to improve the accuracy of the surface. If we 

look back at the original 2D test we can see that many 

of the assumed vertices are a significant distance from 

the actual surface. Since we know that all the vertices 

are on an edge between a corner known to be inside the 

shape and a corner known to be outside the shape we 

can move the vertex along this edge to the actual 

surface point. This extension to the algorithm is 

referred to as "Adaptive Marching Cubes" [14]. Figure 

4 compares liquid surface constructed with original and 

with adaptive marching cubes. 

   

Figure 4.  Comparison of Adaptive and original 

marching cubes 

 

5.3  Surface Close to Container Boundary 

In order to create convincingly realistic animation of 

fluids, when running marching cubes, we need to 

consider one more layer outside the density field, so 

that the boundary can be detected close to the wall of 

the container. Since it takes more triangles to form the 

boundary surface, computation is more expensive. 

Figure 5 suggests that we must form this boundary 

surface whenever possible. 
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          (a)                    (b) 
Figure5. (a) No boundary surface. (b) With boundary 

surface 

 

6. Results 
For two dimensional fluid simulations, I write an 

interactive program. Users can add liquid source using 

mouse right buttons, or apply external forces using left 

buttons. The system also provides users with an 

interface to place fixed objects into the scene, in order 

for liquids to interact with those objects. 

 

   

Figure 6. Interactive liquid simulator in 2D 

 

For three dimensional fluid simulations, it is difficult to 

run the simulation real-time. Therefore I made three 

clips of videos to demonstrate the system works 

correctly. In two of the them I do not form boundary 

surfaces as described in 5.3 since it is time-consuming. 

To quickly visualize the result, first I render the 

three-dimensional scene with OpenGL, which does not 

guarantee excellent quality. If normal vector per face is 

used, then the result looks piecewise planar. However, 

using normal vector per vertex smoothes the surface 

and considerably improves the quality. 

 

As far as rendering is concerned, I use Blue Moon 

Rendering Tool (BMRT) to carry out ray tracing. The 

BMRT package is a freeware that implements global 

illumination with Renderman standard. It is easy to 

adjust parameters of the material of the liquid surface to 

simulate different types of liquids.  

 

   
Figure 7. Different rendering styles 

 

7. Analysis 
7.1  System Process 
The process for simulating fluids in 2D in my program 

is as follows: 

 

This process can run in real time with N < 100, where 

N represents the number of grids we subdivide in each 

dimension. When N becomes larger, the program slows 

down, due to the O(N^2) algorithm that computes the 

next-step properties for each cell.  

 

The process for simulating fluids in 3D in my program 

is as follows: 
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Partition the space into grids

Initialize velocity and density fields

Solve for velocity and density field

Render each frame with BMRT

User defines the boundary 
condition and initial condition 

(add sources or forces)

Output density fields for each frame

Construct liquid surface

 
 

7.2  Running time 
The running time for the last two phases (surface 

construction and rendering) are related to the number of 

surface faces, which depend on the density field at each 

frame. The statistics in the following tables are roughly 

measured in seconds. 

 

frame simulation 
surface 

construction 
rendering 

1st ~10 < 10 4 

50th ~10 22 8 

100th ~10 25 14 

150th ~10 47 17 

Table 1. Running time for Video 1 

 

frame simulation 
surface 

construction 
rendering 

1st ~10 < 10 4 

50th ~10 28 10 

100th ~10 45 17 

150th ~10 58 25 

Table 2. Running time for Video 2 

 

frame simulation 
surface 

construction 
rendering 

1st ~10 < 10 4 

50th ~10 30 12 

100th ~10 43 18 

150th ~10 58 22 

 Table 3. Running time for Video 3 

 

Platform: 

Pentium 4 800MHZ 

512 MB RAM 

NVIDIA Geforce FX5900 

 

8. Conclusion and Future Work 
I have satisfactorily completed this project. I solved the 

Navier Stokes equation on liquids with gravity. Then 

marching cubes algorithm is used to form the isosurface 

of the density fields of liquids, and a further smoothing 

is achieved by computing normal vectors of each vertex. 

Finally, the three dimensional simulations are rendered 

out using Renderman standard (BMRT) and video clips 

are generated. 

 

Here is some special points that I learn in the project: 

1. To perform the boundary or object interaction, the 

resetting of nearby grids must be carried out at each 

sub-step, instead of only once for the whole step. 

2. The Semi-Lagrangian method indeed tends to result 

in highly viscous fluid. Even if the viscosity term is low 

and diffuse rate is high, when being looked at carefully, 

liquids tend to be gluey comparing to the results in [8]. 

 

I plan to implement Loop’s subdivision in order to 

further smooth the liquid surface. Sharp features close 

to boundary surfaces need to be preserved with 

attention. In addition, I hope to write a volume ray 
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tracer by myself so that I have full control over the 

rendering. I also need to try some other methods for 

liquid animation such as dynamic level set so that I will 

be able to compare performance of different approaches. 

Finally, I am interested in the interaction between 

deformable objects and liquids, which I did not 

implement in this project. I will try to follow [11] to 

take it into consideration, and generate some video 

clips with movie-production quality. 
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Figure 8. Two image sequences of liquid animation 
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