
Animation of Liquids
CSE530 Final Project Technical Report

Yu-Chuan Kuo

Abstract
In this project, I implement a physics-based system to

create animation of liquids. The fluid flow is computed

by solving Navier Stokes Equations using both the

Lagragian method and an implicit solver. A scalar field

representing liquid densities is solved over time steps,

and then an adaptive marching cube algorithm is used

to extract the isosurface of the liquid of interest. For the

two-dimensional scheme, the system is designed to be

interactive, due to low computation cost. As for a 3D

case, the solver cannot act in real-time, so I try to

improve the quality of the results. I implement mesh

consolidation to compute vertex normal, smoothing the

visual appearance of the coarse mesh of liquid surface.

Finally, the scene is rendered with a ray tracer and

rendered image sequences are collected to make video

clips.

1. Introduction
Animators have always been interested in generating

animation of liquids. However, it is difficult for users to

create visually pleasing fluid motion manually. Hence

physics-based approaches have been widely used in

computer graphics for the past few years.

The goal of this project is to develop a physics-based

system that generates realistic animation of liquid,

which is a specialized case of fluid animation. For

liquids, human eyes are more sensitive to the surface

(interface between the air and the liquid) rather than to

the density, temperature, or other scalar fields of the

flow. Therefore, different from smoke, rendering of

liquid requires formation of the liquid surface, which

should be modeled explicitly (with polygonal meshes)

or implicitly (with level sets).

Another difference between animation of liquid and of

smoke is that the former usually involves boundaries,

while the latter is sometimes simulated in an

unbounded environment. Programmers have to take

care of the boundary conditions in space dimension,

and consider interaction between objects and liquid

carefully. Moreover, liquid is directly influenced by

gravity, whereas smoke particles are so light that

gravity might often be ignored.

Unlike traditional free surface approaches, I develop

this system using marching cube algorithm to form the

liquid surface. Marching cube is preferred since it

directly constructs the surface using triangular meshes,

which can be easily rendered with conventional

computer graphics (either scan line or ray tracing)

techniques. Furthermore, users can smooth the mesh

with subdivision or deform the surface intuitively by

hand. Implicit surfaces might be harder to control and

cannot be rendered using scan line methods without

being converted to polygonal meshes first.

In Section 2 I will describe some previous research

work devoted to animation of liquids. In Section 3 I

will introduce Navier Stokes equations, the foundation

of my whole project. Section 4 will explain how to

solve them numerically with stablity. I will further state

in detail how I form the surface of the liquid in Section

5 and discuss the result and statistics in Section 6 and 7.

 1

2. Related Work
About ten years ago, creating fluid animation required

laboriously manual inputs by animators. Most

physics-based methods either were unstable or only

handled 2D cases. Foster and Metaxas [1] successfully

used a finite differencing of the Navier Stokes equation

and an explicit solver to model the motion of gases in

three dimensions. Such an explicit solver suffers from

instability when time steps are not small enough.

An implicit solver for the Navier Stokes equations was

used by Stam in his paper [2]. He applied a

semi-Lagrangian technique for velocity advection as

well as a projection method to enforce mass

conservation. His approach was stable even with a very

large time step, which improves the performance of a

fluid simulator considerably. Nevertheless, this scheme

results in too much numerical dissipation. Fedkiw et al.

later alleviated this problem in Visual Simulation of

Smoke [3] by applying "vorticity confinement", which

has been noted in the research of fluid mechanics.

About twenty years ago, some methods have been

proposed to model ocean waves; Fournier et al. [4] used

parametric functions, while Peachy [5] chose sinusoidal

phase functions. Kass et al. [6] simulated surface waves

in water of varying depth, but did not address rotational

and pressure based effects, which are important to

animate fluid's characteristic behavior. Chen et al. [7]

computed fluid motion in two dimensions, which

allowed interaction between moving objects and the

flow field, but the objects must be two-dimensional.

Foster et al. [8] later modeled the liquid surface using

combination of particles and implicit surfaces. This

dynamical level set method managed to avoid both

volume loss (when using implicit surfaces alone) and

visual artifacts due to insufficient particles. Enright et al.

[9] further achieved photorealism using a "thickened"

front tracking technique. Ginzburg et al. [10]

implemented free-surface in liquid animation using

Lattice Boltzmann Model (LBM) in both two and three

dimensions, but his method is not robust in complex

geometries resulting from intrinsic compressibility.

Matthias Muller et. al. [11] recently presents a method

to deal with interaction of fluids with deformable solids;

however, they focus on the interaction between

particles and triangles but do not really construct the

liquid isosurface.

3. Navier Stokes Equation
3.1 Representation of the Scene
Before solving the equations for fluid motion, we need

to represent the fluid corresponding to the equations.

First of all, we have to partition the space into a finite

number of grid cells, which constitute the 2D or 3D

scene, as shown in Figure 1. The fixed boundary and

objects in a scene can be approximated as a subset of

these cells if aligned appropriately to the coordinate

system we use.

Figure 1.. Partitioning of 2D and 3D space into a finite

number of grid cells.

Within each single cell, a density variable and a

velocity variable are defined. The density variable

stores a scalar value, representing the density of the

fluid at this grid, while the velocity variable stores a

vector, representing the velocity at the center point of

this grid. In fact, we need two sets of them in each cell,

one for the current status and the other for the status at

 2

the previous step.

Note that this density value here is for the purpose of

visualization of the fluids, and is calculated after the

velocity field is solved. This is not directly related to

the global density defined in Navier-Stokes Equations.

Hence we may replace this "density field" with other

scalar properties, for example, temperature.

3.2 The Navier Stokes Equation
The famous Navier Stokes Equations have been

extensively studied in the in the field of CFD. Scientists

use the equations to model and describe the flow of

fluids such as smoke, fire, and liquid.

Given the velocity and pressure for some initial time t =

0 , evolution in the properties of fluids can be described

by the Navier-Stokes equations:

 (1)

(2)

where is the vector of velocity, is the vector of

pressure, is the viscosity, is the global density,

is the vector of external force, and is the vector of

partial derivatives in space; that is, in

2D or in 3D.

Equation (1) results from conservation of mass, and

equation (2) results from conservation of momentum.

These equations describe the behavior of

incompressible fluid dynamics. Actually, the pressure

and velocity fields are related to each other. Therefore,

equation (2) can be re-written with merely the velocity

field:

 (3)

where P is a projector that projects any vector onto its

divergence free space. In other words, for any vector ,
by Helmholtz-Hodge Decomposition,

with ,

where q is a scalar, then

4. Numerical Solver
4.1 Semi-Lagragian Method
Stam [2] solved equation (3) implicitly with the

semi-Lagrangian method. At each simulation step, we

want to obtain the velocity and scalar fields at time

(). This method cuts an entire single step into 4
sub steps.

Let X be the spatial coordinate, representing

(x,y) in 2D or (x,y,z) in 3D, and

,

A simulation over a period of time is simply a repetition

of this process. The first sub-step adds forces onto the

field over the time step

In the liquid case, gravity should be added as external

force at this sub-step.

The second sub-step carries out the effect of advection

of the fluid on itself. For each cell, it traces (the center

point of the cell) backwards in time to find the previous

position at the last time step. Then, compute the

previous value at that position by linear interpolation of

values in its neighboring grids. This previous value

determines the new value of this grid cell that we are

computing.

where p is the path corresponding to a partial streamline

of the velocity field.

The third sub-step is to solve a partial differential

equation and models the effect of diffusion. An implicit

 3

method is used here to solve the system, which is

sparse and can be solved efficiently.

The last sub-step constraints the mass conservation rule.

It projects the previous vector onto the divergence free

space ().

In order to perform the last two sub-steps, I need the

multi-grid algorithm to solve for the Poisson equation.

The solver I chose is from the routine POIS3D in the

library FISHPAK [12], as has been used in Stam's

solver. The algorithm of the simulation, hence, looks

like the following:

UpdateVelocity (U_new, U_old, visc, force, dt) {

AddForce(U_new, U_old, force, dt);

swap(U_old, U_new);

Advect(U_new, U_old, U_old, dt);

swap(U_old, U_new);

Diffuse(U_new, U_old, visc, dt);

ConserveMass(U1, dt); /* projection */

}

UpdateScalar (S_new, S_old, U, diff, source, dt)

{

 /* add source */

AddForce(S_new, S_old, source, dt);

swap(S_old, S_new);

Advect(S_new, S_old, U, dt);

swap(S_old, S_new);

Diffuse(S_new, S_old, diff, dt);

}

while (simulating) {

/* receive user input: F, source, etc. */

swap(U_old, U_new);

swap(S_old, S_new);

UpdateVelocity(U_new, U_old, visc, fource,

dt);

UpdateScalar(S_new, S_old, U_new, diff,

source, dt);

}

4.2 Boundary Condition
Foster and Metaxas proposed a clear idea about how to

simulate boundaries and fixed objects in a scene, as

described in [1]. First we approximate them by a subset

of the grids in the scene. After the calculation of

velocity fields and scalar fields (which is characterized

by "temperature" in [2]) at any step, we simply reset the

velocity and scalar value near an object boundary,

according to some intuitive rules. That is, set zero to the

component of velocity orthogonal to the boundary, and

multiply a constant to the component of velocity

parallel to the boundary. The constant multiplied clearly

depends on the roughness of the boundary surface.

Density values near boundary points are not modified,

but those inside the boundary points should be kept

zero (but it is different for temperature).

 4

However, there is a critical differ

be applied in Stam's scheme, si

velocities at the center of each ce

Metaxas defined them at the b

Therefore, when we place a wal

and reset the neighboring veloc

that the walls are effectively two
Figure 2. The blue

cell is the defined

boundary cell, but

the effective

boundaries also

include those green
ence when they are to

nce Stam defined the

ll, whereas Foster and

oundary of the cells.

l (object) in the scene

ity fields, it turns out

 grids thick, as shown

in Figure 2. The reason is that neighboring cells along

two sides of the wall have to hold velocities in opposite

directions.

5. Surface of Liquids
Since people are always more interested in the surface

of liquids instead of density fields, the system has to

form the surface to be rendered. While most previous

work exploits dynamic level set ([8], [9], and [10]) or

particles ([11]), I use marching cube method to directly

build up the surface mesh.

5.1 Marching Cubes
The marching cubes algorithm [13] is used to construct

an isosurface from a 3D field of values. In this project,

the 3D field is just the density field evolved over time.

The 2D analog is illustrated in the Figure 3. For each

pixel, set it to black if the value is below some

threshold, and set it to white if it is above the threshold.

Then smooth the jagged black outlines by skinning

them with lines. This 2D case is also called marching

squares.

Figure 3. Marching Squres Illustration.

The marching cubes algorithm tests the corner of each

cell in the scalar field as being either above or below a

given threshold. This yields a collection of boxes with

classified corners. Since there are eight corners with

two possible states, there are 256 different

combinations for each cube. Then, for each cube, we

replace the cube with a surface that meets the

classification of the cube. The result of the marching

cubes algorithm is a piecewise planar surface that

approximates the isosurface which has constant density

value along a given threshold. We can resolve the

original 256 combinations of cell state down to a total

of 15 combinations, as described in [13]; with this

number it is then easy to create predefined polygon sets

for making the appropriate surface approximation.

5.2 Adaptive Marching Cube

We could at any stage apply conventional smoothing

(e.g., subdivision) to the mesh, this would of course

improve the look but what is more important at this

stage is to improve the accuracy of the surface. If we

look back at the original 2D test we can see that many

of the assumed vertices are a significant distance from

the actual surface. Since we know that all the vertices

are on an edge between a corner known to be inside the

shape and a corner known to be outside the shape we

can move the vertex along this edge to the actual

surface point. This extension to the algorithm is

referred to as "Adaptive Marching Cubes" [14]. Figure

4 compares liquid surface constructed with original and

with adaptive marching cubes.

Figure 4. Comparison of Adaptive and original

marching cubes

5.3 Surface Close to Container Boundary

In order to create convincingly realistic animation of

fluids, when running marching cubes, we need to

consider one more layer outside the density field, so

that the boundary can be detected close to the wall of

the container. Since it takes more triangles to form the

boundary surface, computation is more expensive.

Figure 5 suggests that we must form this boundary

surface whenever possible.

 5

 (a) (b)
Figure5. (a) No boundary surface. (b) With boundary

surface

6. Results
For two dimensional fluid simulations, I write an

interactive program. Users can add liquid source using

mouse right buttons, or apply external forces using left

buttons. The system also provides users with an

interface to place fixed objects into the scene, in order

for liquids to interact with those objects.

Figure 6. Interactive liquid simulator in 2D

For three dimensional fluid simulations, it is difficult to

run the simulation real-time. Therefore I made three

clips of videos to demonstrate the system works

correctly. In two of the them I do not form boundary

surfaces as described in 5.3 since it is time-consuming.

To quickly visualize the result, first I render the

three-dimensional scene with OpenGL, which does not

guarantee excellent quality. If normal vector per face is

used, then the result looks piecewise planar. However,

using normal vector per vertex smoothes the surface

and considerably improves the quality.

As far as rendering is concerned, I use Blue Moon

Rendering Tool (BMRT) to carry out ray tracing. The

BMRT package is a freeware that implements global

illumination with Renderman standard. It is easy to

adjust parameters of the material of the liquid surface to

simulate different types of liquids.

Figure 7. Different rendering styles

7. Analysis
7.1 System Process
The process for simulating fluids in 2D in my program

is as follows:

This process can run in real time with N < 100, where

N represents the number of grids we subdivide in each

dimension. When N becomes larger, the program slows

down, due to the O(N^2) algorithm that computes the

next-step properties for each cell.

The process for simulating fluids in 3D in my program

is as follows:

 6

Partition the space into grids

Initialize velocity and density fields

Solve for velocity and density field

Render each frame with BMRT

User defines the boundary
condition and initial condition

(add sources or forces)

Output density fields for each frame

Construct liquid surface

7.2 Running time
The running time for the last two phases (surface

construction and rendering) are related to the number of

surface faces, which depend on the density field at each

frame. The statistics in the following tables are roughly

measured in seconds.

frame simulation
surface

construction
rendering

1st ~10 < 10 4

50th ~10 22 8

100th ~10 25 14

150th ~10 47 17

Table 1. Running time for Video 1

frame simulation
surface

construction
rendering

1st ~10 < 10 4

50th ~10 28 10

100th ~10 45 17

150th ~10 58 25

Table 2. Running time for Video 2

frame simulation
surface

construction
rendering

1st ~10 < 10 4

50th ~10 30 12

100th ~10 43 18

150th ~10 58 22

 Table 3. Running time for Video 3

Platform:

Pentium 4 800MHZ

512 MB RAM

NVIDIA Geforce FX5900

8. Conclusion and Future Work
I have satisfactorily completed this project. I solved the

Navier Stokes equation on liquids with gravity. Then

marching cubes algorithm is used to form the isosurface

of the density fields of liquids, and a further smoothing

is achieved by computing normal vectors of each vertex.

Finally, the three dimensional simulations are rendered

out using Renderman standard (BMRT) and video clips

are generated.

Here is some special points that I learn in the project:

1. To perform the boundary or object interaction, the

resetting of nearby grids must be carried out at each

sub-step, instead of only once for the whole step.

2. The Semi-Lagrangian method indeed tends to result

in highly viscous fluid. Even if the viscosity term is low

and diffuse rate is high, when being looked at carefully,

liquids tend to be gluey comparing to the results in [8].

I plan to implement Loop’s subdivision in order to

further smooth the liquid surface. Sharp features close

to boundary surfaces need to be preserved with

attention. In addition, I hope to write a volume ray

 7

tracer by myself so that I have full control over the

rendering. I also need to try some other methods for

liquid animation such as dynamic level set so that I will

be able to compare performance of different approaches.

Finally, I am interested in the interaction between

deformable objects and liquids, which I did not

implement in this project. I will try to follow [11] to

take it into consideration, and generate some video

clips with movie-production quality.

References

[1] Foster, N. and Metaxas, D., “Modeling the Motion

of a Hot Turbulent Gas”. ACM SIGGRAPH 97.

[2] Stam, J., “Stable Fluids”. In Proceedings of

SIGGRAPH 1999.

[3] Fedkiw, R., Stam, J., and Jensen H. W., “Visual

Simulation of Smoke”, In Proceedings of SIGGRAPH

2001.

[4] Fournier, A., and Reeves, W. T., “A Simple Model

of Ocean Waves”. In Computer Graphics (Proceedings

of SIGGRAPH 86).

[5] Peachey, D. R. “Modeling waves and Surf”. In

Computer Graphics (Proceedings of SIGGRAPH 86).

[6] Kass, M., and Miller, G. “Rapid, Stable Fluid

Dynamics for Computer Graphics”. In Computer

Graphics (Proceedings of SIGGRAPH 90).

[7] Chen, J., and Lobo, N. “Toward interactive-rate

simulation of fluids with moving obstacles using the

Navier-Stokes equations.” Computer Graphics and

Image Processing 57.

[8] Foster, N., and Fedkiw, R., “Practical animation of

liquids”. In Proceedings of SIGGRAPH 2001.

[9] Enright, D., Marschner, S., Fedkiw, R., “Animation

and Rendering of Complex Water Surfaces”, ACM

SIGGRAPH 2003.

[10] Ginzburg, I., and Steiner, K., “Lattice Boltzmann

Model for Free-Surface flow and Its Application to

Filling Process in Casting”, Journal of Computational

Physics, Volume 185, Issue 1.

[11] Muller, M., Schirm, S., Teschner, M., Heidelberger,

B., and Gross, M., “Interaction of Fluids with

Deformable Solids”, in Journal of Computer Animation

and Virtual Worlds (CAVW), vol 15, no. 3-4

[12] SCD’s FISHPAK source directory,

 ftp://ftp.ucar.edu/dsl/lib/fishpak/

[13] Lorensen, E. W., and Cline, H. E., “Marching

Cubes: A High Resolution 3D Surface Construction

Algorithm”, In Computer Graphics (Proceedings of

SIGGRAPH 87).

[14] Hall, M., and Warren, J., “Adaptive

Polygonalization of Implicitly Defined Surfaces”, IEEE

Journal of Computer Graphics and Applications Nov.,

1990.

Figure 8. Two image sequences of liquid animation

 8

	Animation of Liquids
	Abstract

